Banking System Design & AWS Architecture Guide
Section 1: High Availability Banking Architecture
Core Banking System HA Design
Q: How would you design a highly available core banking system in AWS that handles transactions 24/7?
A: Let's break this down into components and requirements:
Key Requirements:
- 99.999% availability (5 minutes downtime per year)
- Strong consistency for transactions
- Sub-second response times
- Compliance with financial regulations
- Comprehensive audit logging
- Disaster recovery with RPO < 1 minute
Architecture Solution:
Detailed Component Explanation:
-
Front-end Layer
- CloudFront for static content delivery
- WAF for DDoS protection and security rules
- Route 53 with health checks for DNS failover
-
Application Layer
- ECS Fargate for containerized applications
- Auto-scaling based on transaction volume
- Session management using ElastiCache Redis
-
Database Layer
- Multi-AZ RDS deployment
- Read replicas for reporting workloads
- Point-in-time recovery enabled
-
Security Layer
- AWS Shield Advanced for DDoS protection
- AWS KMS for encryption
- AWS Secrets Manager for credential management
Section 2: Transaction Processing System
Q: Design a scalable transaction processing system that handles both real-time and batch transactions.
System Components:
-
Transaction Ingestion:
- API Gateway for real-time transactions
- S3 for batch file uploads
- SQS for message queuing
-
Processing Layer:
- Lambda functions for stateless processing
- Step Functions for transaction orchestration
- DynamoDB for transaction status
-
Storage Layer:
- Aurora for transaction records
- DynamoDB for real-time lookups
- S3 for document storage
Section 3: Fraud Detection System
Q: Design a real-time fraud detection system for banking transactions.
System Details:
-
Real-time Processing:
- Kinesis Data Streams for transaction ingestion
- Kinesis Analytics for pattern detection
- SageMaker endpoints for ML inference
-
Storage & Analysis:
- S3 data lake for historical data
- Redshift for analytical queries
- OpenSearch for real-time search
Section 4: Compliance & Audit System
Q: Design a comprehensive logging and audit system for banking operations.
Implementation Details:
-
Log Collection:
- CloudTrail for API activity
- CloudWatch Logs for application logs
- VPC Flow Logs for network activity
-
Processing & Storage:
- Kinesis Firehose for log aggregation
- Lambda for log enrichment
- S3 for long-term storage
- OpenSearch for searching
Section 5: Banking API Gateway
Q: Design a secure API gateway for banking services.
Security Implementation:
-
Authentication & Authorization:
- Cognito for customer authentication
- Lambda authorizers for fine-grained control
- WAF for attack protection
-
API Management:
- Rate limiting per customer
- Request validation
- Response transformation
- Error handling
Best Practices for Banking Systems
-
Security:
- Encryption at rest and in transit
- Regular security audits
- Penetration testing
- Compliance monitoring
-
Performance:
- Cache frequently accessed data
- Use read replicas for reporting
- Implement circuit breakers
- Monitor latency at all layers
-
Monitoring:
- Real-time dashboards
- Automated alerts
- Transaction tracking
- Error rate monitoring
-
Compliance:
- PCI DSS compliance
- SOX compliance
- GDPR compliance
- Regular audits
1. Lambda & API Gateway Questions
Q1: How would you design a serverless API with rate limiting and authentication?
A: Let's build an example using Terraform:
# API Gateway definition
resource "aws_api_gateway_rest_api" "banking_api" {
name = "banking-api"
endpoint_configuration {
types = ["REGIONAL"]
}
}
# Lambda function for authentication
resource "aws_lambda_function" "auth_lambda" {
filename = "auth.zip"
function_name = "api-authorizer"
role = aws_iam_role.lambda_role.arn
handler = "auth.handler"
runtime = "nodejs16.x"
environment {
variables = {
JWT_SECRET = var.jwt_secret
}
}
}
# API Gateway Authorizer
resource "aws_api_gateway_authorizer" "api_authorizer" {
name = "banking-authorizer"
rest_api_id = aws_api_gateway_rest_api.banking_api.id
authorizer_uri = aws_lambda_function.auth_lambda.invoke_arn
authorizer_credentials = aws_iam_role.invocation_role.arn
}
# Usage plan for rate limiting
resource "aws_api_gateway_usage_plan" "banking_usage_plan" {
name = "banking-usage-plan"
api_stages {
api_id = aws_api_gateway_rest_api.banking_api.id
stage = aws_api_gateway_stage.prod.stage_name
}
quota_settings {
limit = 1000
period = "DAY"
}
throttle_settings {
burst_limit = 100
rate_limit = 50
}
}
Example of the Lambda authorizer code:
exports.handler = async (event) => {
try {
// Extract JWT token from header
const token = event.authorizationToken;
// Verify token
const decoded = jwt.verify(token, process.env.JWT_SECRET);
// Generate IAM policy
return generatePolicy('user', 'Allow', event.methodArn, decoded);
} catch (error) {
return generatePolicy('user', 'Deny', event.methodArn);
}
};
const generatePolicy = (principalId, effect, resource, decoded = {}) => {
return {
principalId,
policyDocument: {
Version: '2012-10-17',
Statement: [{
Action: 'execute-api:Invoke',
Effect: effect,
Resource: resource
}]
},
context: decoded
};
};
Q2: Explain how you would implement a dead letter queue for Lambda functions with error handling
# SQS Dead Letter Queue
resource "aws_sqs_queue" "dlq" {
name = "lambda-dlq"
message_retention_seconds = 1209600 # 14 days
}
# Lambda Function with DLQ
resource "aws_lambda_function" "process_transaction" {
filename = "process_transaction.zip"
function_name = "process-transaction"
role = aws_iam_role.lambda_role.arn
handler = "index.handler"
runtime = "nodejs16.x"
dead_letter_config {
target_arn = aws_sqs_queue.dlq.arn
}
environment {
variables = {
RETRY_COUNT = "3"
}
}
}
Example Lambda code with error handling:
exports.handler = async (event) => {
const retryCount = parseInt(process.env.RETRY_COUNT);
try {
// Process transaction
await processTransaction(event);
return {
statusCode: 200,
body: JSON.stringify({ message: 'Transaction processed successfully' })
};
} catch (error) {
if (event.retryAttempt && event.retryAttempt >= retryCount) {
// Send to DLQ after max retries
throw new Error(`Max retries reached: ${error.message}`);
}
// Implement exponential backoff
const retryAttempt = (event.retryAttempt || 0) + 1;
await new Promise(resolve =>
setTimeout(resolve, Math.pow(2, retryAttempt) * 100)
);
return await exports.handler({
...event,
retryAttempt
});
}
};
2. Infrastructure as Code Scenarios
Q1: Design a multi-environment infrastructure using Terraform workspaces
graph TD A[Project Root] --> B[modules/] A --> C[environments/] B --> D[vpc/] B --> E[rds/] B --> F[lambda/] C --> G[dev/] C --> H[staging/] C --> I[prod/] G --> J[main.tf] G --> K[variables.tf] G --> L[terraform.tfvars]
Example structure:
# modules/vpc/main.tf
module "vpc" {
source = "terraform-aws-modules/vpc/aws"
name = "${var.environment}-banking-vpc"
cidr = var.vpc_cidr
azs = var.availability_zones
private_subnets = var.private_subnet_cidrs
public_subnets = var.public_subnet_cidrs
enable_nat_gateway = true
single_nat_gateway = var.environment != "prod"
tags = {
Environment = var.environment
Terraform = "true"
}
}
# environments/prod/main.tf
module "banking_vpc" {
source = "../../modules/vpc"
environment = "prod"
vpc_cidr = "10.0.0.0/16"
availability_zones = ["us-west-2a", "us-west-2b", "us-west-2c"]
private_subnet_cidrs = ["10.0.1.0/24", "10.0.2.0/24", "10.0.3.0/24"]
public_subnet_cidrs = ["10.0.101.0/24", "10.0.102.0/24", "10.0.103.0/24"]
}
Q2: Implement a CI/CD pipeline for Infrastructure deployment
# buildspec.yml for AWS CodeBuild
version: 0.2
phases:
install:
runtime-versions:
python: 3.9
commands:
- wget https://releases.hashicorp.com/terraform/1.0.0/terraform_1.0.0_linux_amd64.zip
- unzip terraform_1.0.0_linux_amd64.zip
- mv terraform /usr/local/bin/
pre_build:
commands:
- terraform init
- terraform workspace select ${ENVIRONMENT}
build:
commands:
- terraform plan -out=tfplan
- terraform apply -auto-approve tfplan
post_build:
commands:
- echo "Infrastructure deployment completed"
artifacts:
files:
- tfplan
- terraform.tfstate
Q3: Implement a serverless ETL pipeline using Step Functions
# Step Function definition
resource "aws_sfn_state_machine" "etl_pipeline" {
name = "banking-etl-pipeline"
role_arn = aws_iam_role.step_function_role.arn
definition = <<EOF
{
"StartAt": "ExtractData",
"States": {
"ExtractData": {
"Type": "Task",
"Resource": "${aws_lambda_function.extract.arn}",
"Next": "TransformData",
"Retry": [{
"ErrorEquals": ["States.ALL"],
"IntervalSeconds": 2,
"MaxAttempts": 3,
"BackoffRate": 2
}]
},
"TransformData": {
"Type": "Task",
"Resource": "${aws_lambda_function.transform.arn}",
"Next": "LoadData"
},
"LoadData": {
"Type": "Task",
"Resource": "${aws_lambda_function.load.arn}",
"End": true
}
}
}
EOF
}
Example Lambda function for transformation:
import pandas as pd
def handler(event, context):
try:
# Read data from S3
df = pd.read_csv(f"s3://{event['bucket']}/{event['key']}")
# Apply transformations
df['transaction_date'] = pd.to_datetime(df['transaction_date'])
df['amount'] = df['amount'].astype(float)
# Calculate aggregations
daily_totals = df.groupby('transaction_date')['amount'].sum()
# Save transformed data
output_key = f"transformed/{event['key']}"
daily_totals.to_csv(f"s3://{event['bucket']}/{output_key}")
return {
'statusCode': 200,
'body': {
'output_bucket': event['bucket'],
'output_key': output_key
}
}
except Exception as e:
raise Exception(f"Transform failed: {str(e)}")
3. Real-world Scenario Questions
Q1: How would you implement a webhook system for real-time transaction notifications?
Implementation example:
# Lambda function for webhook delivery
import boto3
import json
import requests
from aws_lambda_powertools import Logger
logger = Logger()
dynamodb = boto3.resource('dynamodb')
table = dynamodb.Table('webhook_configs')
@logger.inject_lambda_context
def handler(event, context):
try:
# Get webhook configuration
webhook_config = table.get_item(
Key={'clientId': event['clientId']}
)['Item']
# Prepare payload
payload = {
'event_type': event['type'],
'transaction_id': event['transactionId'],
'amount': event['amount'],
'timestamp': event['timestamp']
}
# Send webhook
response = requests.post(
webhook_config['url'],
json=payload,
headers={
'X-Signature': generate_signature(payload, webhook_config['secret']),
'Content-Type': 'application/json'
}
)
response.raise_for_status()
# Update delivery status
table.update_item(
Key={'clientId': event['clientId']},
UpdateExpression='SET lastDelivery = :timestamp, deliveryStatus = :status',
ExpressionAttributeValues={
':timestamp': event['timestamp'],
':status': 'SUCCESS'
}
)
return {
'statusCode': 200,
'body': 'Webhook delivered successfully'
}
except requests.exceptions.RequestException as e:
logger.error(f"Webhook delivery failed: {str(e)}")
raise
Senior Cloud Engineer Conceptual Q&A Guide
AWS Core Services
Networking
Q: Explain the difference between Security Groups and NACLs. A:
-
Security Groups:
- Stateful
- Operate at instance level
- Allow rules only (implicit deny)
- Rules are evaluated all together
-
NACLs:
- Stateless
- Operate at subnet level
- Both allow and deny rules
- Rules are evaluated in order
Q: What's the maximum number of VPCs and subnets you can have per region? A:
- VPCs: 5 per region (soft limit)
- Subnets: 200 per VPC (hard limit)
Q: Explain Transit Gateway and its benefits. A:
- Central hub for connecting VPCs and on-premises networks
- Simplifies network topology
- Reduces connection complexity
- Supports multicast routing
- Can share across accounts using RAM
- Enables global routing through inter-region peering
Compute
Q: What are the different consistent states of an EC2 instance? A:
- pending
- running
- stopping
- stopped
- shutting-down
- terminated
Q: Explain EC2 placement groups. A:
- Cluster: Low latency, high throughput (same rack)
- Spread: Protect against hardware failures (different racks)
- Partition: Distributed applications (different partitions)
Storage
Q: Compare EBS volume types and their use cases. A:
- gp3: General purpose SSD, balanced price/performance
- io2: High-performance SSD, mission-critical workloads
- st1: Throughput-optimized HDD, big data, data warehouses
- sc1: Cold HDD, infrequently accessed data
Q: What's the difference between EFS and FSx? A:
-
EFS:
- Managed NFS for Linux
- Dynamic scaling
- Multi-AZ by default
-
FSx:
- Windows File Server (FSx for Windows)
- Lustre (FSx for Lustre)
- NetApp ONTAP
- OpenZFS
Advanced Concepts
High Availability
Q: What's the difference between RTO and RPO? A:
- RTO (Recovery Time Objective): Time to restore service
- RPO (Recovery Point Objective): Acceptable data loss period
Q: Explain Auto Scaling cooldown period. A:
- Default: 300 seconds
- Prevents new scaling activities
- Can be customized per scaling policy
- Helps prevent scaling thrashing
Security
Q: What is AWS KMS and what are its key concepts? A:
- Customer Master Keys (CMKs)
- Key rotation
- Key policies
- Grants
- Envelope encryption
- Integration with AWS services
Q: Explain IAM role assumption process. A:
- Application calls AWS STS AssumeRole
- STS returns temporary credentials
- Application uses credentials to access AWS resources
- Credentials expire after specified duration
Cost Optimization
Q: Name key strategies for AWS cost optimization. A:
- Right sizing instances
- Using Spot instances where applicable
- Reserved Instances/Savings Plans
- S3 lifecycle policies
- Autoscaling based on demand
- Tag-based cost allocation
- Using managed services vs self-managed
Performance
Q: What tools would you use for performance monitoring? A:
- CloudWatch
- Metrics
- Logs
- Dashboards
- X-Ray for tracing
- CloudTrail for API activity
- VPC Flow Logs
- AWS Config for resource tracking
DevOps Practices
Q: Explain Infrastructure as Code best practices. A:
- Version control everything
- Use modular design
- Implement least privilege
- Use consistent naming conventions
- Implement proper state management
- Regular testing
- Documentation as code
Q: What is GitOps and its benefits? A:
- Git as single source of truth
- Declarative infrastructure
- Automated reconciliation
- Version control benefits
- Audit trail
- Easy rollbacks
Troubleshooting Scenarios
Q: EC2 instance is unreachable via SSH. What steps would you take? A:
- Check security group rules
- Verify network ACL settings
- Ensure instance has public IP
- Check route table configuration
- Verify key pair
- Check instance status checks
- Review VPC flow logs
Q: RDS database performance is degrading. How do you investigate? A:
- Check CloudWatch metrics
- CPU utilization
- Memory pressure
- I/O performance
- Review slow query logs
- Check connection count
- Analyze Performance Insights
- Review backup/maintenance windows
Service Limits & Quotas
Q: Name some important AWS service quotas to monitor. A:
- EC2:
- Running On-Demand instances
- Spot instance requests
- VPC:
- VPCs per region
- Subnets per VPC
- IAM:
- Roles per account
- Policies per role
- RDS:
- Instances per region
- Storage per instance
Compliance & Governance
Q: Explain AWS Shared Responsibility Model. A: AWS is responsible for:
- Physical security
- Network infrastructure
- Virtualization layer
Customer is responsible for:
- Data encryption
- OS patching
- Network configuration
- Identity management
Modern Architecture Patterns
Q: Explain the difference between horizontal and vertical scaling. A: Horizontal Scaling:
- Add more instances
- Distribute load
- Better fault tolerance
- Usually more cost-effective
Vertical Scaling:
- Increase instance size
- Simpler architecture
- Limited by hardware
- Potential downtime during scaling
Q: What is the strangler pattern and when would you use it? A:
- Gradually replace legacy systems
- Minimize risk
- Maintain business continuity
- Incremental modernization
- Used in monolith to microservice transitions
AWS Well-Architected Framework
Q: Name and briefly explain the six pillars. A:
- Operational Excellence
- Run and monitor systems
- Security
- Protect data and systems
- Reliability
- Recover from disruptions
- Performance Efficiency
- Use resources efficiently
- Cost Optimization
- Avoid unnecessary costs
- Sustainability
- Minimize environmental impact
Container & Serverless
Q: Compare ECS Launch Types. A: EC2 Launch Type:
- More control
- Can use reserved instances
- Better for large workloads
Fargate:
- Serverless
- Pay per task
- Less management overhead
- Better for variable workloads
Q: Explain Lambda cold starts and how to minimize them. A: Causes:
- New function version
- No recent invocations
- Concurrent execution limit
Mitigation:
- Provisioned concurrency
- Keep functions warm
- Optimize deployment package
- Use appropriate memory allocation