📊 Performance Metrics Guide
Overview
Performance metrics are quantifiable measures that assess a system's behavior, efficiency, and health. Think of them as your system's vital signs - just like a doctor monitors heart rate, blood pressure, and temperature to assess a patient's health, engineers monitor response time, throughput, and resource utilization to evaluate system performance.
🔑 Key Concepts
1. Time-Based Metrics
- Response Time
- Latency
- Processing Time
- Time to First Byte (TTFB)
- Time to Interactive (TTI)
2. Resource Metrics
- CPU Utilization
- Memory Usage
- Disk I/O
- Network Throughput
- Cache Hit Ratio
3. Business Metrics
- Requests per Second (RPS)
- Transactions per Second (TPS)
- Error Rate
- Success Rate
- Availability
💻 Implementation
Performance Metrics Collector
- Java
- Go
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicLong;
import java.time.Instant;
import java.util.Map;
public class PerformanceMetricsCollector {
private final ConcurrentHashMap<String, MetricData> metrics;
private final AtomicLong requestCount;
private final AtomicLong errorCount;
public PerformanceMetricsCollector() {
this.metrics = new ConcurrentHashMap<>();
this.requestCount = new AtomicLong(0);
this.errorCount = new AtomicLong(0);
}
public void recordResponseTime(String endpoint, long responseTime) {
metrics.compute(endpoint, (key, existingData) -> {
if (existingData == null) {
return new MetricData(responseTime);
}
existingData.updateWith(responseTime);
return existingData;
});
}
public void incrementRequestCount() {
requestCount.incrementAndGet();
}
public void incrementErrorCount() {
errorCount.incrementAndGet();
}
public double getErrorRate() {
long totalRequests = requestCount.get();
return totalRequests == 0 ? 0 :
(double) errorCount.get() / totalRequests * 100;
}
public MetricsSummary getMetricsSummary(String endpoint) {
MetricData data = metrics.get(endpoint);
if (data == null) {
return new MetricsSummary();
}
return new MetricsSummary(
data.getAverageResponseTime(),
data.getMinResponseTime(),
data.getMaxResponseTime(),
data.getRequestCount(),
getErrorRate()
);
}
static class MetricData {
private final AtomicLong totalTime;
private final AtomicLong count;
private final AtomicLong minTime;
private final AtomicLong maxTime;
public MetricData(long initialTime) {
this.totalTime = new AtomicLong(initialTime);
this.count = new AtomicLong(1);
this.minTime = new AtomicLong(initialTime);
this.maxTime = new AtomicLong(initialTime);
}
public void updateWith(long newTime) {
totalTime.addAndGet(newTime);
count.incrementAndGet();
updateMin(newTime);
updateMax(newTime);
}
private void updateMin(long newTime) {
minTime.updateAndGet(current -> Math.min(current, newTime));
}
private void updateMax(long newTime) {
maxTime.updateAndGet(current -> Math.max(current, newTime));
}
// Getters
public double getAverageResponseTime() {
return (double) totalTime.get() / count.get();
}
public long getMinResponseTime() {
return minTime.get();
}
public long getMaxResponseTime() {
return maxTime.get();
}
public long getRequestCount() {
return count.get();
}
}
}
package main
import (
"sync"
"sync/atomic"
"time"
)
type MetricData struct {
totalTime int64
count int64
minTime int64
maxTime int64
mu sync.RWMutex
}
type PerformanceMetricsCollector struct {
metrics map[string]*MetricData
requestCount int64
errorCount int64
mu sync.RWMutex
}
func NewPerformanceMetricsCollector() *PerformanceMetricsCollector {
return &PerformanceMetricsCollector{
metrics: make(map[string]*MetricData),
}
}
func (pmc *PerformanceMetricsCollector) RecordResponseTime(endpoint string, responseTime int64) {
pmc.mu.Lock()
defer pmc.mu.Unlock()
if data, exists := pmc.metrics[endpoint]; exists {
data.updateWith(responseTime)
} else {
pmc.metrics[endpoint] = &MetricData{
totalTime: responseTime,
count: 1,
minTime: responseTime,
maxTime: responseTime,
}
}
}
func (pmc *PerformanceMetricsCollector) IncrementRequestCount() {
atomic.AddInt64(&pmc.requestCount, 1)
}
func (pmc *PerformanceMetricsCollector) IncrementErrorCount() {
atomic.AddInt64(&pmc.errorCount, 1)
}
func (pmc *PerformanceMetricsCollector) GetErrorRate() float64 {
totalRequests := atomic.LoadInt64(&pmc.requestCount)
if totalRequests == 0 {
return 0
}
errors := atomic.LoadInt64(&pmc.errorCount)
return float64(errors) / float64(totalRequests) * 100
}
type MetricsSummary struct {
AverageResponseTime float64
MinResponseTime int64
MaxResponseTime int64
RequestCount int64
ErrorRate float64
}
func (pmc *PerformanceMetricsCollector) GetMetricsSummary(endpoint string) MetricsSummary {
pmc.mu.RLock()
defer pmc.mu.RUnlock()
data, exists := pmc.metrics[endpoint]
if !exists {
return MetricsSummary{}
}
data.mu.RLock()
defer data.mu.RUnlock()
return MetricsSummary{
AverageResponseTime: float64(data.totalTime) / float64(data.count),
MinResponseTime: data.minTime,
MaxResponseTime: data.maxTime,
RequestCount: data.count,
ErrorRate: pmc.GetErrorRate(),
}
}
func (md *MetricData) updateWith(newTime int64) {
md.mu.Lock()
defer md.mu.Unlock()
md.totalTime += newTime
md.count++
if newTime < md.minTime {
md.minTime = newTime
}
if newTime > md.maxTime {
md.maxTime = newTime
}
}
🤝 Related Patterns
-
Circuit Breaker Pattern
- Uses performance metrics for decisions
- Prevents system overload
- Monitors failure rates
-
Bulkhead Pattern
- Isolates performance issues
- Resource usage monitoring
- Failure containment
-
Throttling Pattern
- Controls request rates
- Uses metrics for decisions
- Prevents overload
⚙️ Best Practices
Collection
- Use atomic operations
- Implement thread-safe collectors
- Minimize overhead
- Sample when appropriate
Monitoring
- Set proper baselines
- Use percentiles, not averages
- Monitor trends
- Set up alerts
Analysis
- Correlate metrics
- Use statistical analysis
- Track historical data
- Identify patterns
🚫 Common Pitfalls
-
Metric Overload
- Too many metrics
- Analysis paralysis
- Solution: Focus on key indicators
-
Poor Sampling
- Inaccurate data
- Missing important events
- Solution: Proper sampling strategies
-
Wrong Aggregation
- Using averages instead of percentiles
- Missing outliers
- Solution: Use appropriate statistical methods
🎯 Use Cases
1. E-commerce Platform
- Response time tracking
- Order processing metrics
- Payment gateway performance
- Inventory system metrics
2. Video Streaming Service
- Buffering metrics
- Quality switches
- Playback errors
- Bandwidth usage
3. Financial Trading System
- Transaction latency
- Order execution time
- System throughput
- Error rates
🔍 Deep Dive Topics
Thread Safety
- Atomic operations
- Lock strategies
- Concurrent collections
- Race condition prevention
Distributed Systems
- Cross-node metrics
- Network latency
- Clock synchronization
- Aggregation strategies
Performance
- Collection overhead
- Storage optimization
- Query performance
- Real-time analysis
📚 Additional Resources
Documentation
Tools
- Metrics Collection: Prometheus, StatsD
- Visualization: Grafana, Kibana
- APM: New Relic, Datadog
- Tracing: Jaeger, Zipkin
❓ FAQs
Which metrics should I collect first?
- Response time
- Error rate
- Resource utilization
- Throughput
- User satisfaction metrics
How often should I collect metrics?
- Real-time for critical metrics
- Every minute for important metrics
- Every 5-15 minutes for general metrics
- Hourly for long-term trends
How long should I store metrics?
- Real-time: 24 hours
- High resolution: 7-30 days
- Aggregated: 6-12 months
- Historical: 1+ years
How do I handle metric spikes?
- Set up proper alerting
- Use percentiles
- Implement automatic scaling
- Have incident response plans