📊 Capacity Planning Guide
Overview
Capacity planning is the process of determining and planning the system resources required to meet future demands. Think of it like planning a city's infrastructure: you need to predict population growth, traffic patterns, and utility usage to ensure the city can handle future demands without wasting resources on overbuilding.
🔑 Key Concepts
1. Resource Metrics
- CPU Utilization
- Memory Usage
- Storage Capacity
- Network Bandwidth
- Response Times
2. Planning Horizons
- Short-term (1-3 months)
- Medium-term (3-12 months)
- Long-term (1+ years)
3. Planning Methods
- Trend Analysis
- Predictive Modeling
- Workload Analysis
- Performance Modeling
💻 Implementation
Capacity Monitoring System
- Java
- Go
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledFuture;
import java.util.concurrent.TimeUnit;
import java.util.ArrayList;
import java.util.List;
public class CapacityMonitor {
private final List<MetricCollector> collectors;
private final ScheduledExecutorService scheduler;
private final MetricStorage storage;
public CapacityMonitor(ScheduledExecutorService scheduler, MetricStorage storage) {
this.collectors = new ArrayList<>();
this.scheduler = scheduler;
this.storage = storage;
}
public void addCollector(MetricCollector collector) {
collectors.add(collector);
}
public void startMonitoring(long period, TimeUnit unit) {
for (MetricCollector collector : collectors) {
scheduler.scheduleAtFixedRate(
() -> collectAndStore(collector),
0,
period,
unit
);
}
}
private void collectAndStore(MetricCollector collector) {
try {
MetricData data = collector.collect();
storage.store(data);
if (data.getValue() > data.getThreshold()) {
handleThresholdExceeded(data);
}
} catch (Exception e) {
// Handle exception
}
}
private void handleThresholdExceeded(MetricData data) {
// Implement threshold handling logic
notifyAdministrators(data);
triggerScaling(data);
}
public CapacityForecast generateForecast(String metricType, int daysAhead) {
List<MetricData> historicalData = storage.getHistoricalData(metricType);
return new CapacityForecast(historicalData, daysAhead);
}
}
interface MetricCollector {
MetricData collect();
}
class MetricData {
private String type;
private double value;
private double threshold;
private long timestamp;
// Constructor and getters/setters
}
class CapacityForecast {
private List<MetricData> predictions;
private double confidence;
// Constructor and methods
}
package main
import (
"sync"
"time"
)
type MetricData struct {
Type string
Value float64
Threshold float64
Timestamp time.Time
}
type MetricCollector interface {
Collect() (MetricData, error)
}
type CapacityMonitor struct {
collectors []MetricCollector
storage MetricStorage
stopChan chan struct{}
wg sync.WaitGroup
}
func NewCapacityMonitor(storage MetricStorage) *CapacityMonitor {
return &CapacityMonitor{
collectors: make([]MetricCollector, 0),
storage: storage,
stopChan: make(chan struct{}),
}
}
func (cm *CapacityMonitor) AddCollector(collector MetricCollector) {
cm.collectors = append(cm.collectors, collector)
}
func (cm *CapacityMonitor) StartMonitoring(period time.Duration) {
for _, collector := range cm.collectors {
cm.wg.Add(1)
go cm.monitorMetric(collector, period)
}
}
func (cm *CapacityMonitor) monitorMetric(collector MetricCollector, period time.Duration) {
defer cm.wg.Done()
ticker := time.NewTicker(period)
defer ticker.Stop()
for {
select {
case <-ticker.C:
cm.collectAndStore(collector)
case <-cm.stopChan:
return
}
}
}
func (cm *CapacityMonitor) collectAndStore(collector MetricCollector) {
data, err := collector.Collect()
if err != nil {
// Handle error
return
}
err = cm.storage.Store(data)
if err != nil {
// Handle error
return
}
if data.Value > data.Threshold {
cm.handleThresholdExceeded(data)
}
}
func (cm *CapacityMonitor) handleThresholdExceeded(data MetricData) {
// Implement threshold handling logic
cm.notifyAdministrators(data)
cm.triggerScaling(data)
}
func (cm *CapacityMonitor) GenerateForecast(metricType string, daysAhead int) (*CapacityForecast, error) {
historicalData, err := cm.storage.GetHistoricalData(metricType)
if err != nil {
return nil, err
}
return NewCapacityForecast(historicalData, daysAhead), nil
}
type CapacityForecast struct {
Predictions []MetricData
Confidence float64
}
func NewCapacityForecast(historicalData []MetricData, daysAhead int) *CapacityForecast {
// Implement forecasting logic
return &CapacityForecast{
Predictions: make([]MetricData, daysAhead),
Confidence: calculateConfidence(historicalData),
}
}
🤝 Related Patterns
-
Throttling Pattern
- Controls resource consumption
- Prevents system overload
- Complements capacity planning
-
Queue-Based Load Leveling
- Smooths out workload spikes
- Helps in capacity estimation
- Improves resource utilization
-
Circuit Breaker Pattern
- Prevents system overload
- Helps maintain stability
- Supports capacity management
⚙️ Best Practices
Configuration
- Set clear monitoring intervals
- Define appropriate thresholds
- Configure alerting rules
- Implement automation
Monitoring
- Track all critical metrics
- Use historical data analysis
- Monitor trends and patterns
- Implement predictive analytics
Testing
- Load testing scenarios
- Capacity validation
- Performance benchmarking
- Stress testing
🚫 Common Pitfalls
-
Inadequate Data Collection
- Missing critical metrics
- Insufficient history
- Solution: Comprehensive monitoring
-
Poor Forecasting
- Ignoring seasonal patterns
- Over-simplifying trends
- Solution: Advanced analytics
-
Reactive Planning
- Late response to needs
- Crisis management
- Solution: Proactive monitoring
🎯 Use Cases
1. Cloud Infrastructure
- Resource allocation
- Cost optimization
- Performance management
- Scaling decisions
2. Database Systems
- Storage planning
- Query performance
- Backup capacity
- Replication needs
3. Microservices
- Container sizing
- Service scaling
- Resource allocation
- Network capacity
🔍 Deep Dive Topics
Thread Safety
- Concurrent monitoring
- Resource locking
- Data consistency
- Race condition prevention
Distributed Systems
- Cross-node monitoring
- Aggregated metrics
- Network planning
- Data replication
Performance
- Response time analysis
- Resource utilization
- Throughput planning
- Bottleneck identification
📚 Additional Resources
Documentation
Tools
- Monitoring: Prometheus, Grafana
- Analytics: Elasticsearch, Kibana
- Testing: Apache JMeter, K6
- Forecasting: Prophet, TensorFlow
❓ FAQs
How far ahead should I plan?
- Short-term: 3-6 months
- Medium-term: 6-12 months
- Long-term: 1-3 years
- Depends on business growth
What metrics are most important?
- CPU utilization
- Memory usage
- Storage capacity
- Network bandwidth
- Response times
- Error rates
How often should I review capacity?
- Weekly for critical systems
- Monthly for normal operations
- Quarterly for long-term planning
- Immediately after incidents
How do I handle unexpected growth?
- Maintain buffer capacity
- Use auto-scaling
- Have emergency procedures
- Monitor leading indicators