📝 Write-Through Caching Pattern Guide
Overview
The Write-Through caching pattern ensures that data is written to both the cache and the underlying database in a single transaction. Think of it like a bank teller who simultaneously updates both the computer system (cache) and the official ledger (database) when processing a transaction, ensuring perfect consistency between both records.
🔑 Key Concepts
1. Core Components
- Cache Manager
- Write Coordinator
- Transaction Manager
- Data Validator
2. Operations
- Synchronized Writes
- Atomic Transactions
- Data Validation
- Write Confirmation
3. States
- Write Pending
- Write Complete
- Write Failed
- Cache Synchronized
💻 Implementation
Write-Through Cache Implementation
- Java
- Go
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
public class WriteThroughCache<K, V> {
private final ConcurrentHashMap<K, V> cache;
private final DataStore<K, V> dataStore;
private final ReadWriteLock lock;
public WriteThroughCache(DataStore<K, V> dataStore) {
this.cache = new ConcurrentHashMap<>();
this.dataStore = dataStore;
this.lock = new ReentrantReadWriteLock();
}
public void write(K key, V value) throws Exception {
lock.writeLock().lock();
try {
// Write to database first
dataStore.write(key, value);
// Then update cache
cache.put(key, value);
} finally {
lock.writeLock().unlock();
}
}
public V read(K key) throws Exception {
lock.readLock().lock();
try {
// Try cache first
V value = cache.get(key);
if (value != null) {
return value;
}
// If not in cache, get from store
value = dataStore.read(key);
if (value != null) {
cache.put(key, value);
}
return value;
} finally {
lock.readLock().unlock();
}
}
public void writeBatch(Map<K, V> entries) throws Exception {
lock.writeLock().lock();
try {
// Write all entries to database
dataStore.writeBatch(entries);
// Update cache with all entries
cache.putAll(entries);
} finally {
lock.writeLock().unlock();
}
}
public void delete(K key) throws Exception {
lock.writeLock().lock();
try {
// Delete from database first
dataStore.delete(key);
// Then remove from cache
cache.remove(key);
} finally {
lock.writeLock().unlock();
}
}
public void invalidate(K key) {
lock.writeLock().lock();
try {
cache.remove(key);
} finally {
lock.writeLock().unlock();
}
}
public void clear() {
lock.writeLock().lock();
try {
cache.clear();
} finally {
lock.writeLock().unlock();
}
}
}
interface DataStore<K, V> {
void write(K key, V value) throws Exception;
V read(K key) throws Exception;
void writeBatch(Map<K, V> entries) throws Exception;
void delete(K key) throws Exception;
}
package main
import (
"context"
"sync"
)
type DataStore[K comparable, V any] interface {
Write(ctx context.Context, key K, value V) error
Read(ctx context.Context, key K) (V, error)
WriteBatch(ctx context.Context, entries map[K]V) error
Delete(ctx context.Context, key K) error
}
type WriteThroughCache[K comparable, V any] struct {
cache map[K]V
dataStore DataStore[K, V]
mu sync.RWMutex
}
func NewWriteThroughCache[K comparable, V any](dataStore DataStore[K, V]) *WriteThroughCache[K, V] {
return &WriteThroughCache[K, V]{
cache: make(map[K]V),
dataStore: dataStore,
}
}
func (c *WriteThroughCache[K, V]) Write(ctx context.Context, key K, value V) error {
c.mu.Lock()
defer c.mu.Unlock()
// Write to database first
if err := c.dataStore.Write(ctx, key, value); err != nil {
return err
}
// Then update cache
c.cache[key] = value
return nil
}
func (c *WriteThroughCache[K, V]) Read(ctx context.Context, key K) (V, error) {
c.mu.RLock()
// Try cache first
if value, exists := c.cache[key]; exists {
c.mu.RUnlock()
return value, nil
}
c.mu.RUnlock()
// If not in cache, get from store
value, err := c.dataStore.Read(ctx, key)
if err != nil {
var zero V
return zero, err
}
// Update cache
c.mu.Lock()
c.cache[key] = value
c.mu.Unlock()
return value, nil
}
func (c *WriteThroughCache[K, V]) WriteBatch(ctx context.Context, entries map[K]V) error {
c.mu.Lock()
defer c.mu.Unlock()
// Write all entries to database
if err := c.dataStore.WriteBatch(ctx, entries); err != nil {
return err
}
// Update cache with all entries
for k, v := range entries {
c.cache[k] = v
}
return nil
}
func (c *WriteThroughCache[K, V]) Delete(ctx context.Context, key K) error {
c.mu.Lock()
defer c.mu.Unlock()
// Delete from database first
if err := c.dataStore.Delete(ctx, key); err != nil {
return err
}
// Then remove from cache
delete(c.cache, key)
return nil
}
func (c *WriteThroughCache[K, V]) Invalidate(key K) {
c.mu.Lock()
defer c.mu.Unlock()
delete(c.cache, key)
}
func (c *WriteThroughCache[K, V]) Clear() {
c.mu.Lock()
defer c.mu.Unlock()
c.cache = make(map[K]V)
}
🤝 Related Patterns
-
Write-Behind Cache
- Asynchronous database updates
- Better write performance
- Less consistency guarantees
-
Read-Through Cache
- Complements Write-Through
- Handles read operations
- Cache population strategy
-
Cache-Aside
- Application manages cache
- More flexible
- Less consistency
⚙️ Best Practices
Configuration
- Use transactional writes
- Set appropriate timeouts
- Configure retry policies
- Implement circuit breakers
Monitoring
- Track write latency
- Monitor consistency
- Watch error rates
- Alert on failures
Testing
- Test transaction atomicity
- Verify consistency
- Check failure handling
- Test concurrent writes
🚫 Common Pitfalls
-
Performance Impact
- Slower writes
- Resource contention
- Solution: Batch operations
-
Transaction Failures
- Partial updates
- Inconsistent state
- Solution: Proper error handling
-
Resource Lock
- Write bottlenecks
- Deadlock potential
- Solution: Optimized locking
🎯 Use Cases
1. Financial Systems
- Account balances
- Transaction records
- Audit logs
- Real-time reporting
2. Inventory Management
- Stock levels
- Order processing
- Price updates
- Availability tracking
3. User Profile System
- Profile updates
- Preference changes
- Security settings
- Session management
🔍 Deep Dive Topics
Thread Safety
- Transaction isolation
- Lock management
- Race condition prevention
- Deadlock avoidance
Distributed Systems
- Distributed transactions
- Consistency protocols
- Network partitioning
- Failure handling
Performance
- Write optimization
- Batch processing
- Connection pooling
- Resource management
📚 Additional Resources
Documentation
Tools
- Redis
- Hazelcast
- Apache Ignite
- Coherence
❓ FAQs
When should I use Write-Through?
- Strong consistency needed
- Critical data accuracy
- Can tolerate write latency
- Transactional systems
How to handle write failures?
- Implement retry logic
- Use circuit breakers
- Roll back transactions
- Log all failures
What about write performance?
- Use batch operations
- Optimize transactions
- Monitor latency
- Scale resources
How to maintain consistency?
- Use transactions
- Implement locks
- Handle failures
- Verify writes