🚀 Write-Behind Caching Pattern Guide
Overview
The Write-Behind pattern (also known as Write-Back) is a caching strategy where writes are first made to the cache and then asynchronously propagated to the underlying database. Think of it like a writer who quickly jots down notes in a notebook (cache) and later transcribes them into a formal document (database) when time permits.
🔑 Key Concepts
1. Components
- Write Queue
- Batch Processor
- Status Tracker
- Conflict Resolver
2. Operations
- Asynchronous Write
- Batch Processing
- Queue Management
- Status Tracking
3. States
- Pending Write
- Writing
- Completed
- Failed
💻 Implementation
Write-Behind Cache Implementation
- Java
- Go
import java.util.concurrent.*;
import java.util.Map;
import java.util.Queue;
import java.util.LinkedList;
public class WriteBehindCache<K, V> {
private final ConcurrentMap<K, V> cache;
private final Queue<WriteOperation<K, V>> writeQueue;
private final DataStore<K, V> dataStore;
private final ScheduledExecutorService scheduler;
private final int batchSize;
private final long writeDelay;
public WriteBehindCache(
DataStore<K, V> dataStore,
int batchSize,
long writeDelay,
TimeUnit timeUnit) {
this.cache = new ConcurrentHashMap<>();
this.writeQueue = new ConcurrentLinkedQueue<>();
this.dataStore = dataStore;
this.batchSize = batchSize;
this.writeDelay = writeDelay;
this.scheduler = Executors.newScheduledThreadPool(1);
startWriteBehindProcessor(timeUnit);
}
private void startWriteBehindProcessor(TimeUnit timeUnit) {
scheduler.scheduleWithFixedDelay(
this::processBatch,
writeDelay,
writeDelay,
timeUnit
);
}
public void write(K key, V value) {
cache.put(key, value);
writeQueue.offer(new WriteOperation<>(key, value, OperationType.WRITE));
}
public void delete(K key) {
cache.remove(key);
writeQueue.offer(new WriteOperation<>(key, null, OperationType.DELETE));
}
public V read(K key) {
return cache.get(key);
}
private void processBatch() {
int count = 0;
Map<K, V> batch = new ConcurrentHashMap<>();
Set<K> deleteBatch = new HashSet<>();
while (count < batchSize && !writeQueue.isEmpty()) {
WriteOperation<K, V> operation = writeQueue.poll();
if (operation != null) {
if (operation.type == OperationType.WRITE) {
batch.put(operation.key, operation.value);
} else {
deleteBatch.add(operation.key);
}
count++;
}
}
if (!batch.isEmpty()) {
try {
dataStore.writeBatch(batch);
} catch (Exception e) {
// Handle failed writes
requeue(batch);
logError("Batch write failed", e);
}
}
if (!deleteBatch.isEmpty()) {
try {
dataStore.deleteBatch(deleteBatch);
} catch (Exception e) {
// Handle failed deletes
requeueDeletes(deleteBatch);
logError("Batch delete failed", e);
}
}
}
private void requeue(Map<K, V> failed) {
failed.forEach((k, v) ->
writeQueue.offer(new WriteOperation<>(k, v, OperationType.WRITE))
);
}
private void requeueDeletes(Set<K> failed) {
failed.forEach(k ->
writeQueue.offer(new WriteOperation<>(k, null, OperationType.DELETE))
);
}
public void shutdown() {
scheduler.shutdown();
try {
processBatch(); // Process remaining items
scheduler.awaitTermination(writeDelay * 2, TimeUnit.MILLISECONDS);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
private static class WriteOperation<K, V> {
final K key;
final V value;
final OperationType type;
WriteOperation(K key, V value, OperationType type) {
this.key = key;
this.value = value;
this.type = type;
}
}
private enum OperationType {
WRITE,
DELETE
}
}
package main
import (
"context"
"sync"
"time"
)
type OperationType int
const (
Write OperationType = iota
Delete
)
type WriteOperation[K comparable, V any] struct {
Key K
Value V
Type OperationType
}
type WriteBehindCache[K comparable, V any] struct {
cache map[K]V
writeQueue chan WriteOperation[K, V]
dataStore DataStore[K, V]
batchSize int
mu sync.RWMutex
ctx context.Context
cancel context.CancelFunc
}
func NewWriteBehindCache[K comparable, V any](
dataStore DataStore[K, V],
batchSize int,
writeDelay time.Duration,
) *WriteBehindCache[K, V] {
ctx, cancel := context.WithCancel(context.Background())
cache := &WriteBehindCache[K, V]{
cache: make(map[K]V),
writeQueue: make(chan WriteOperation[K, V], batchSize*2),
dataStore: dataStore,
batchSize: batchSize,
ctx: ctx,
cancel: cancel,
}
go cache.startWriteBehindProcessor(writeDelay)
return cache
}
func (c *WriteBehindCache[K, V]) Write(key K, value V) {
c.mu.Lock()
c.cache[key] = value
c.mu.Unlock()
c.writeQueue <- WriteOperation[K, V]{
Key: key,
Value: value,
Type: Write,
}
}
func (c *WriteBehindCache[K, V]) Delete(key K) {
c.mu.Lock()
delete(c.cache, key)
c.mu.Unlock()
c.writeQueue <- WriteOperation[K, V]{
Key: key,
Type: Delete,
}
}
func (c *WriteBehindCache[K, V]) Read(key K) (V, bool) {
c.mu.RLock()
defer c.mu.RUnlock()
value, exists := c.cache[key]
return value, exists
}
func (c *WriteBehindCache[K, V]) startWriteBehindProcessor(writeDelay time.Duration) {
ticker := time.NewTicker(writeDelay)
defer ticker.Stop()
for {
select {
case <-c.ctx.Done():
return
case <-ticker.C:
c.processBatch()
}
}
}
func (c *WriteBehindCache[K, V]) processBatch() {
batch := make(map[K]V)
deleteBatch := make(map[K]struct{})
count := 0
// Collect batch of operations
for count < c.batchSize {
select {
case op := <-c.writeQueue:
if op.Type == Write {
batch[op.Key] = op.Value
} else {
deleteBatch[op.Key] = struct{}{}
}
count++
default:
goto ProcessBatch
}
}
ProcessBatch:
if len(batch) > 0 {
if err := c.dataStore.WriteBatch(c.ctx, batch); err != nil {
// Handle failed writes
c.requeue(batch)
}
}
if len(deleteBatch) > 0 {
if err := c.dataStore.DeleteBatch(c.ctx, deleteBatch); err != nil {
// Handle failed deletes
c.requeueDeletes(deleteBatch)
}
}
}
func (c *WriteBehindCache[K, V]) requeue(failed map[K]V) {
for k, v := range failed {
c.writeQueue <- WriteOperation[K, V]{
Key: k,
Value: v,
Type: Write,
}
}
}
func (c *WriteBehindCache[K, V]) requeueDeletes(failed map[K]struct{}) {
for k := range failed {
c.writeQueue <- WriteOperation[K, V]{
Key: k,
Type: Delete,
}
}
}
func (c *WriteBehindCache[K, V]) Shutdown() {
c.cancel()
c.processBatch() // Process remaining items
close(c.writeQueue)
}
🤝 Related Patterns
-
Write-Through Cache
- Synchronous writes
- Stronger consistency
- Higher write latency
-
Read-Through Cache
- Complementary pattern
- Handles read operations
- Cache population
-
Cache-Aside
- Application-managed cache
- More control
- Less abstraction
⚙️ Best Practices
Configuration
- Set appropriate batch sizes
- Configure write delays
- Implement retry policies
- Monitor queue size
Monitoring
- Track write latency
- Monitor queue length
- Watch error rates
- Alert on failures
Testing
- Test batch processing
- Verify data consistency
- Check error handling
- Test shutdown behavior
🚫 Common Pitfalls
-
Data Loss
- Queue overflow
- Process crashes
- Solution: Persistent queues
-
Inconsistency Window
- Stale reads
- Write conflicts
- Solution: Version tracking
-
Resource Exhaustion
- Memory overflow
- Queue buildup
- Solution: Backpressure mechanisms
🎯 Use Cases
1. Logging Systems
- High-volume logs
- Performance critical
- Eventual consistency
- Batch processing
2. Analytics Platform
- Event tracking
- Metrics collection
- User behavior
- Performance data
3. Social Media Platform
- Status updates
- User interactions
- Content moderation
- Activity feeds
🔍 Deep Dive Topics
Thread Safety
- Queue synchronization
- Cache consistency
- Lock management
- Atomic operations
Distributed Systems
- Queue distribution
- Failure recovery
- Network partitioning
- Consistency models
Performance
- Batch optimization
- Queue management
- Memory efficiency
- Write coalescing
📚 Additional Resources
Documentation
Tools
- Redis
- Apache Kafka
- RabbitMQ
- Apache Cassandra
❓ FAQs
When should I use Write-Behind?
- High-write workloads
- Performance priority
- Eventual consistency acceptable
- Batch processing beneficial
How to handle failures?
- Implement retry logic
- Use persistent queues
- Monitor error rates
- Have recovery procedures
What's the optimal batch size?
- Consider write patterns
- Monitor performance
- Balance latency/throughput
- Test different sizes
How to maintain consistency?
- Version tracking
- Conflict resolution
- Regular reconciliation
- Monitor drift