Skip to main content

🚀 Write-Behind Caching Pattern Guide

Overview

The Write-Behind pattern (also known as Write-Back) is a caching strategy where writes are first made to the cache and then asynchronously propagated to the underlying database. Think of it like a writer who quickly jots down notes in a notebook (cache) and later transcribes them into a formal document (database) when time permits.

🔑 Key Concepts

1. Components

  • Write Queue
  • Batch Processor
  • Status Tracker
  • Conflict Resolver

2. Operations

  • Asynchronous Write
  • Batch Processing
  • Queue Management
  • Status Tracking

3. States

  • Pending Write
  • Writing
  • Completed
  • Failed

💻 Implementation

Write-Behind Cache Implementation

import java.util.concurrent.*;
import java.util.Map;
import java.util.Queue;
import java.util.LinkedList;

public class WriteBehindCache<K, V> {
private final ConcurrentMap<K, V> cache;
private final Queue<WriteOperation<K, V>> writeQueue;
private final DataStore<K, V> dataStore;
private final ScheduledExecutorService scheduler;
private final int batchSize;
private final long writeDelay;

public WriteBehindCache(
DataStore<K, V> dataStore,
int batchSize,
long writeDelay,
TimeUnit timeUnit) {
this.cache = new ConcurrentHashMap<>();
this.writeQueue = new ConcurrentLinkedQueue<>();
this.dataStore = dataStore;
this.batchSize = batchSize;
this.writeDelay = writeDelay;
this.scheduler = Executors.newScheduledThreadPool(1);

startWriteBehindProcessor(timeUnit);
}

private void startWriteBehindProcessor(TimeUnit timeUnit) {
scheduler.scheduleWithFixedDelay(
this::processBatch,
writeDelay,
writeDelay,
timeUnit
);
}

public void write(K key, V value) {
cache.put(key, value);
writeQueue.offer(new WriteOperation<>(key, value, OperationType.WRITE));
}

public void delete(K key) {
cache.remove(key);
writeQueue.offer(new WriteOperation<>(key, null, OperationType.DELETE));
}

public V read(K key) {
return cache.get(key);
}

private void processBatch() {
int count = 0;
Map<K, V> batch = new ConcurrentHashMap<>();
Set<K> deleteBatch = new HashSet<>();

while (count < batchSize && !writeQueue.isEmpty()) {
WriteOperation<K, V> operation = writeQueue.poll();
if (operation != null) {
if (operation.type == OperationType.WRITE) {
batch.put(operation.key, operation.value);
} else {
deleteBatch.add(operation.key);
}
count++;
}
}

if (!batch.isEmpty()) {
try {
dataStore.writeBatch(batch);
} catch (Exception e) {
// Handle failed writes
requeue(batch);
logError("Batch write failed", e);
}
}

if (!deleteBatch.isEmpty()) {
try {
dataStore.deleteBatch(deleteBatch);
} catch (Exception e) {
// Handle failed deletes
requeueDeletes(deleteBatch);
logError("Batch delete failed", e);
}
}
}

private void requeue(Map<K, V> failed) {
failed.forEach((k, v) ->
writeQueue.offer(new WriteOperation<>(k, v, OperationType.WRITE))
);
}

private void requeueDeletes(Set<K> failed) {
failed.forEach(k ->
writeQueue.offer(new WriteOperation<>(k, null, OperationType.DELETE))
);
}

public void shutdown() {
scheduler.shutdown();
try {
processBatch(); // Process remaining items
scheduler.awaitTermination(writeDelay * 2, TimeUnit.MILLISECONDS);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}

private static class WriteOperation<K, V> {
final K key;
final V value;
final OperationType type;

WriteOperation(K key, V value, OperationType type) {
this.key = key;
this.value = value;
this.type = type;
}
}

private enum OperationType {
WRITE,
DELETE
}
}
  1. Write-Through Cache

    • Synchronous writes
    • Stronger consistency
    • Higher write latency
  2. Read-Through Cache

    • Complementary pattern
    • Handles read operations
    • Cache population
  3. Cache-Aside

    • Application-managed cache
    • More control
    • Less abstraction

⚙️ Best Practices

Configuration

  • Set appropriate batch sizes
  • Configure write delays
  • Implement retry policies
  • Monitor queue size

Monitoring

  • Track write latency
  • Monitor queue length
  • Watch error rates
  • Alert on failures

Testing

  • Test batch processing
  • Verify data consistency
  • Check error handling
  • Test shutdown behavior

🚫 Common Pitfalls

  1. Data Loss

    • Queue overflow
    • Process crashes
    • Solution: Persistent queues
  2. Inconsistency Window

    • Stale reads
    • Write conflicts
    • Solution: Version tracking
  3. Resource Exhaustion

    • Memory overflow
    • Queue buildup
    • Solution: Backpressure mechanisms

🎯 Use Cases

1. Logging Systems

  • High-volume logs
  • Performance critical
  • Eventual consistency
  • Batch processing

2. Analytics Platform

  • Event tracking
  • Metrics collection
  • User behavior
  • Performance data

3. Social Media Platform

  • Status updates
  • User interactions
  • Content moderation
  • Activity feeds

🔍 Deep Dive Topics

Thread Safety

  • Queue synchronization
  • Cache consistency
  • Lock management
  • Atomic operations

Distributed Systems

  • Queue distribution
  • Failure recovery
  • Network partitioning
  • Consistency models

Performance

  • Batch optimization
  • Queue management
  • Memory efficiency
  • Write coalescing

📚 Additional Resources

Documentation

Tools

  • Redis
  • Apache Kafka
  • RabbitMQ
  • Apache Cassandra

❓ FAQs

When should I use Write-Behind?

  • High-write workloads
  • Performance priority
  • Eventual consistency acceptable
  • Batch processing beneficial

How to handle failures?

  • Implement retry logic
  • Use persistent queues
  • Monitor error rates
  • Have recovery procedures

What's the optimal batch size?

  • Consider write patterns
  • Monitor performance
  • Balance latency/throughput
  • Test different sizes

How to maintain consistency?

  • Version tracking
  • Conflict resolution
  • Regular reconciliation
  • Monitor drift