๐ Cache-Aside Pattern
๐ Overview and Problem Statementโ
Definitionโ
Cache-Aside (also known as Lazy Loading) is a caching pattern where the application first checks the cache for data, and only if it's not found (cache miss) does it query the database, subsequently updating the cache with the retrieved data.
Problems It Solvesโ
- High database load
- High latency in data retrieval
- Unnecessary database queries
- Scalability bottlenecks
- Cost of repeated queries
Business Valueโ
- Improved application performance
- Reduced database costs
- Better user experience
- Increased system scalability
- Lower operational costs
๐๏ธ Architecture & Core Conceptsโ
Basic Flowโ
Invalidation Patternsโ
๐ป Technical Implementationโ
Basic Cache-Aside Implementationโ
@Service
public class CacheAsideService<K, V> {
private final Cache<K, V> cache;
private final DataSource dataSource;
private final LoadingMetrics metrics;
public V get(K key) {
long startTime = System.currentTimeMillis();
try {
// Try cache first
V value = cache.get(key);
if (value != null) {
metrics.recordCacheHit();
return value;
}
// Cache miss - get from database
metrics.recordCacheMiss();
value = dataSource.get(key);
if (value != null) {
cache.put(key, value);
}
return value;
} finally {
metrics.recordLatency(
System.currentTimeMillis() - startTime);
}
}
public void put(K key, V value) {
// Write-through
dataSource.put(key, value);
cache.invalidate(key);
}
}
Distributed Cache Implementationโ
@Service
public class DistributedCacheAside {
private final RedisTemplate<String, Object> redis;
private final JdbcTemplate jdbc;
private final Duration ttl;
public Optional<User> getUser(String userId) {
String cacheKey = "user:" + userId;
// Try cache first
User cachedUser = (User) redis.opsForValue()
.get(cacheKey);
if (cachedUser != null) {
return Optional.of(cachedUser);
}
// Cache miss - get from database
User user = jdbc.queryForObject(
"SELECT * FROM users WHERE id = ?",
new Object[]{userId},
userRowMapper
);
if (user != null) {
// Update cache with TTL
redis.opsForValue().set(
cacheKey,
user,
ttl
);
}
return Optional.ofNullable(user);
}
}
Concurrent Cache-Asideโ
@Service
public class ConcurrentCacheAside {
private final Cache<String, Future<User>> cache;
private final UserRepository repository;
public User getUser(String userId) throws Exception {
Future<User> future = cache.get(userId, key -> {
try {
return executorService.submit(() -> {
User user = repository.findById(userId);
if (user == null) {
throw new UserNotFoundException(userId);
}
return user;
});
} catch (Exception e) {
throw new CompletionException(e);
}
});
try {
return future.get(timeout, TimeUnit.MILLISECONDS);
} catch (TimeoutException e) {
cache.invalidate(userId);
throw e;
}
}
}
๐ค Decision Criteria & Evaluationโ
Caching Strategy Comparisonโ
Strategy | Pros | Cons | Use Case |
---|---|---|---|
Cache-Aside | Simple, flexible | Potential stale data | General purpose |
Write-Through | Consistent data | Higher write latency | Write-heavy |
Write-Behind | Best performance | Risk of data loss | High-performance |
Read-Through | Simple for apps | Cache provider dependent | Read-heavy |
Performance Characteristicsโ
public class CachePerformanceMonitor {
private final MetricRegistry metrics;
public void recordMetrics(
String operation,
boolean cacheHit,
long latency
) {
metrics.counter(
operation + ".cache." +
(cacheHit ? "hit" : "miss")
).inc();
metrics.histogram(
operation + ".latency"
).update(latency);
}
}
โ ๏ธ Anti-Patternsโ
1. Cache Stampedeโ
โ Wrong:
public class StampedeVulnerable {
public User getUser(String id) {
User user = cache.get(id);
if (user == null) {
// Multiple threads can hit database simultaneously
user = database.get(id);
cache.put(id, user);
}
return user;
}
}
โ Correct:
public class StampedeProtected {
private final LoadingCache<String, User> cache;
public StampedeProtected() {
cache = Caffeine.newBuilder()
.maximumSize(10_000)
.expireAfterWrite(Duration.ofMinutes(5))
.build(key -> {
// Only one thread will load value
return database.get(key);
});
}
public User getUser(String id) {
return cache.get(id);
}
}
2. Missing Error Handlingโ
โ Wrong:
public class ErrorProne {
public Data getData(String key) {
try {
return cache.get(key);
} catch (Exception e) {
return database.get(key);
// Cache remains inconsistent
}
}
}
โ Correct:
public class ErrorHandling {
public Data getData(String key) {
try {
return cache.get(key);
} catch (CacheException e) {
metrics.recordError("cache", e);
try {
Data data = database.get(key);
cache.put(key, data); // Restore cache
return data;
} catch (Exception dbError) {
metrics.recordError("database", dbError);
throw new ServiceException(
"Unable to retrieve data", dbError);
}
}
}
}
๐ก Best Practicesโ
1. Cache Configurationโ
@Configuration
public class CacheConfig {
@Bean
public Cache<String, User> userCache() {
return Caffeine.newBuilder()
.maximumSize(10_000)
.expireAfterWrite(Duration.ofMinutes(10))
.recordStats()
.build();
}
@Bean
public CacheMetricsCollector metricsCollector(
Cache<String, User> cache
) {
return new CacheMetricsCollector(cache);
}
}
2. Error Handling and Resilienceโ
public class ResilientCacheAside {
private final CircuitBreaker circuitBreaker;
public User getUser(String id) {
return circuitBreaker.executeWithFallback(
() -> getUserWithCache(id),
throwable -> getUserDirect(id)
);
}
private User getUserWithCache(String id) {
User user = cache.get(id);
if (user == null) {
user = database.get(id);
cache.put(id, user);
}
return user;
}
private User getUserDirect(String id) {
// Direct database access when cache fails
return database.get(id);
}
}
๐ Troubleshooting Guideโ
Common Issuesโ
- Cache Coherency
public class CacheCoherencyMonitor {
public void checkCoherency(String key) {
Data cacheData = cache.get(key);
Data dbData = database.get(key);
if (!Objects.equals(cacheData, dbData)) {
metrics.recordIncoherency(key);
logger.warn(
"Cache incoherency detected for key: {}",
key
);
// Auto-heal
cache.put(key, dbData);
}
}
}
- Cache Performance
public class CachePerformanceMonitor {
public CacheStats getStats() {
return CacheStats.builder()
.hitRate(cache.stats().hitRate())
.missRate(cache.stats().missRate())
.loadExceptionRate(
cache.stats().loadExceptionRate())
.averageLoadPenalty(
cache.stats().averageLoadPenalty())
.evictionCount(
cache.stats().evictionCount())
.build();
}
}
๐งช Testingโ
Cache Testingโ
@Test
public void testCacheAside() {
CacheAsideService<String, User> service =
new CacheAsideService<>(cache, database);
// First call - should hit database
User user1 = service.get("user1");
verify(database, times(1)).get("user1");
verify(cache, times(1)).put("user1", user1);
// Second call - should hit cache
User user2 = service.get("user1");
verify(database, times(1)).get("user1");
assertEquals(user1, user2);
// After expiration - should hit database again
cache.invalidate("user1");
User user3 = service.get("user1");
verify(database, times(2)).get("user1");
}
๐ Real-world Use Casesโ
1. Redis Cache-Asideโ
- Session storage
- API response caching
- Database query caching
- Rate limiting
2. Content Delivery Networks (CDN)โ
- Static asset caching
- Edge caching
- Dynamic content caching
3. Memcachedโ
- Object caching
- Page caching
- Session caching
๐ Referencesโ
Booksโ
- "Designing Data-Intensive Applications" by Martin Kleppmann
- "High Performance Browser Networking" by Ilya Grigorik