Skip to main content

๐Ÿ”’ Strong Consistency in Distributed Systems

๐Ÿ“‹ Overview and Problem Statementโ€‹

Definitionโ€‹

Strong Consistency (also known as Linearizability) guarantees that all operations appear to execute atomically and in a single total order that is consistent with the real-time ordering of operations.

Problems It Solvesโ€‹

  • Data inconsistency across nodes
  • Read-after-write anomalies
  • Race conditions
  • Concurrent access issues
  • Ordering violations

Business Valueโ€‹

  • Data integrity assurance
  • Predictable system behavior
  • Simplified application logic
  • Regulatory compliance
  • Transaction accuracy

๐Ÿ—๏ธ Architecture & Core Conceptsโ€‹

System Componentsโ€‹

Implementation Approachesโ€‹

  1. Single Leader
  1. Consensus-based

๐Ÿ’ป Technical Implementationโ€‹

Basic Strong Consistency Implementationโ€‹

public class StrongConsistencyManager {
private final List<Node> nodes;
private final int quorumSize;
private final Lock distributedLock;

public WriteResult write(String key, String value) {
try {
// Acquire distributed lock
distributedLock.lock();

// Get quorum
List<Node> quorum = selectQuorum();

// Prepare phase
long timestamp = System.currentTimeMillis();
PrepareResult prepare = prepare(quorum, key, value, timestamp);

if (prepare.isSuccess()) {
// Commit phase
return commit(quorum, key, value, timestamp);
}

throw new ConsistencyException("Failed to achieve consensus");

} finally {
distributedLock.unlock();
}
}

private PrepareResult prepare(
List<Node> quorum,
String key,
String value,
long timestamp) {

int prepareCount = 0;
for (Node node : quorum) {
try {
if (node.prepare(key, value, timestamp)) {
prepareCount++;
}
} catch (Exception e) {
// Handle node failure
}
}

return new PrepareResult(
prepareCount >= quorumSize);
}
}

Consensus Implementationโ€‹

public class RaftConsensus implements ConsensusProtocol {
private Role role = Role.FOLLOWER;
private long currentTerm = 0;
private Node votedFor = null;
private List<LogEntry> log = new ArrayList<>();

@Override
public AppendEntriesResult appendEntries(
long term,
Node leader,
long prevLogIndex,
long prevLogTerm,
List<LogEntry> entries,
long leaderCommit) {

// Implement Raft append entries logic
if (term < currentTerm) {
return AppendEntriesResult.failure(currentTerm);
}

if (term > currentTerm) {
currentTerm = term;
role = Role.FOLLOWER;
votedFor = null;
}

// Verify log matching property
if (!verifyLogMatch(prevLogIndex, prevLogTerm)) {
return AppendEntriesResult.failure(currentTerm);
}

// Append new entries
appendNewEntries(entries, prevLogIndex);

// Update commit index
updateCommitIndex(leaderCommit);

return AppendEntriesResult.success(currentTerm);
}
}

๐Ÿค” Decision Criteria & Evaluationโ€‹

Consistency Model Comparison Matrixโ€‹

AspectStrong ConsistencyEventual ConsistencyCausal Consistency
LatencyHigherLowerMedium
AvailabilityLowerHigherMedium
ComplexityHighLowMedium
Use CasesFinancial, ACIDSocial, AnalyticsCollaborative
Network RequirementsHighLowMedium

When to Use Strong Consistencyโ€‹

  1. Financial Systems

    • Banking transactions
    • Payment processing
    • Account balances
  2. Critical Systems

    • Medical records
    • Security systems
    • Legal documents

๐Ÿ“Š Performance Metrics & Optimizationโ€‹

Key Performance Indicatorsโ€‹

public class ConsistencyMetrics {
private final MetricRegistry metrics;

public void recordLatency(long startTime) {
long duration = System.currentTimeMillis() - startTime;
metrics.histogram("consistency.latency").update(duration);
}

public void recordConsensusRounds(int rounds) {
metrics.histogram("consensus.rounds").update(rounds);
}

public void recordQuorumSize(int size) {
metrics.gauge("quorum.size", () -> size);
}
}

โš ๏ธ Anti-Patternsโ€‹

1. Incorrect Quorum Calculationโ€‹

โŒ Wrong:

public class IncorrectQuorum {
// Always using simple majority
private int calculateQuorum(int nodeCount) {
return nodeCount / 2 + 1;
}
}

โœ… Correct:

public class CorrectQuorum {
private int calculateQuorum(int nodeCount, QuorumType type) {
switch (type) {
case WRITE:
return (nodeCount / 2) + 1;
case READ:
return nodeCount - (nodeCount / 2);
case FAST_PATH:
return (3 * nodeCount) / 4;
default:
throw new IllegalArgumentException();
}
}
}

2. Ignoring Network Partitionsโ€‹

โŒ Wrong:

public class UnsafeConsistency {
public void write(Data data) {
// Assuming all nodes are always available
nodes.forEach(node -> node.write(data));
}
}

โœ… Correct:

public class SafeConsistency {
public WriteResult write(Data data) {
int successfulWrites = 0;
List<Exception> failures = new ArrayList<>();

for (Node node : nodes) {
try {
node.write(data);
successfulWrites++;
} catch (NetworkPartitionException e) {
failures.add(e);
}
}

if (successfulWrites < quorumSize) {
throw new QuorumNotReachedException(failures);
}

return new WriteResult(successfulWrites);
}
}

๐Ÿ’ก Best Practicesโ€‹

1. Design Principlesโ€‹

  • Use appropriate consensus protocols
  • Implement proper failure detection
  • Handle network partitions
  • Monitor system health

2. Implementation Guidelinesโ€‹

public class ConsistencyManager {
private final ConsensusProtocol consensus;
private final FailureDetector failureDetector;
private final QuorumManager quorumManager;

public WriteResult write(Transaction tx) {
// Verify system health
if (!failureDetector.isSystemHealthy()) {
throw new SystemUnhealthyException();
}

// Get quorum
Set<Node> quorum = quorumManager.getQuorum();

// Execute consensus protocol
return consensus.execute(tx, quorum);
}
}

๐Ÿ” Troubleshooting Guideโ€‹

Common Issuesโ€‹

  1. Split Brain
public class SplitBrainDetector {
public boolean detectSplitBrain() {
Set<Node> partition1 = getPartition1Nodes();
Set<Node> partition2 = getPartition2Nodes();

return partition1.size() >= quorumSize &&
partition2.size() >= quorumSize;
}
}
  1. Stale Reads
public class StaleReadDetector {
public boolean isStaleRead(ReadResult result) {
return result.getVersion() <
getLatestCommittedVersion();
}
}

๐Ÿงช Testingโ€‹

Test Scenariosโ€‹

@Test
public void testStrongConsistency() {
ConsistencyManager manager = new ConsistencyManager();

// Write data
WriteResult write = manager.write("key1", "value1");

// Immediate read should see the write
ReadResult read = manager.read("key1");
assertEquals("value1", read.getValue());

// All nodes should have the same value
for (Node node : manager.getNodes()) {
assertEquals("value1", node.read("key1").getValue());
}
}

@Test
public void testNetworkPartition() {
ConsistencyManager manager = new ConsistencyManager();
NetworkSimulator network = new NetworkSimulator();

// Create network partition
network.createPartition();

// Write should fail without quorum
assertThrows(QuorumNotReachedException.class,
() -> manager.write("key1", "value1"));
}

๐ŸŒ Real-world Use Casesโ€‹

1. Google Spannerโ€‹

  • External consistency
  • TrueTime API
  • Global distribution

2. Azure Cosmos DBโ€‹

  • Strong consistency option
  • Global distribution
  • Multi-region writes

3. ZooKeeperโ€‹

  • Atomic broadcasts
  • Consensus protocol
  • Configuration management

๐Ÿ“š Referencesโ€‹

Booksโ€‹

  • "Designing Data-Intensive Applications" by Martin Kleppmann
  • "Distributed Systems" by Maarten van Steen and Andrew S. Tanenbaum

Papersโ€‹

  • "Impossibility of Distributed Consensus with One Faulty Process" by Fischer, Lynch, and Paterson
  • "In Search of an Understandable Consensus Algorithm" by Diego Ongaro and John Ousterhout

Online Resourcesโ€‹