๐ Strong Consistency in Distributed Systems
๐ Overview and Problem Statementโ
Definitionโ
Strong Consistency (also known as Linearizability) guarantees that all operations appear to execute atomically and in a single total order that is consistent with the real-time ordering of operations.
Problems It Solvesโ
- Data inconsistency across nodes
- Read-after-write anomalies
- Race conditions
- Concurrent access issues
- Ordering violations
Business Valueโ
- Data integrity assurance
- Predictable system behavior
- Simplified application logic
- Regulatory compliance
- Transaction accuracy
๐๏ธ Architecture & Core Conceptsโ
System Componentsโ
Implementation Approachesโ
- Single Leader
- Consensus-based
๐ป Technical Implementationโ
Basic Strong Consistency Implementationโ
public class StrongConsistencyManager {
private final List<Node> nodes;
private final int quorumSize;
private final Lock distributedLock;
public WriteResult write(String key, String value) {
try {
// Acquire distributed lock
distributedLock.lock();
// Get quorum
List<Node> quorum = selectQuorum();
// Prepare phase
long timestamp = System.currentTimeMillis();
PrepareResult prepare = prepare(quorum, key, value, timestamp);
if (prepare.isSuccess()) {
// Commit phase
return commit(quorum, key, value, timestamp);
}
throw new ConsistencyException("Failed to achieve consensus");
} finally {
distributedLock.unlock();
}
}
private PrepareResult prepare(
List<Node> quorum,
String key,
String value,
long timestamp) {
int prepareCount = 0;
for (Node node : quorum) {
try {
if (node.prepare(key, value, timestamp)) {
prepareCount++;
}
} catch (Exception e) {
// Handle node failure
}
}
return new PrepareResult(
prepareCount >= quorumSize);
}
}
Consensus Implementationโ
public class RaftConsensus implements ConsensusProtocol {
private Role role = Role.FOLLOWER;
private long currentTerm = 0;
private Node votedFor = null;
private List<LogEntry> log = new ArrayList<>();
@Override
public AppendEntriesResult appendEntries(
long term,
Node leader,
long prevLogIndex,
long prevLogTerm,
List<LogEntry> entries,
long leaderCommit) {
// Implement Raft append entries logic
if (term < currentTerm) {
return AppendEntriesResult.failure(currentTerm);
}
if (term > currentTerm) {
currentTerm = term;
role = Role.FOLLOWER;
votedFor = null;
}
// Verify log matching property
if (!verifyLogMatch(prevLogIndex, prevLogTerm)) {
return AppendEntriesResult.failure(currentTerm);
}
// Append new entries
appendNewEntries(entries, prevLogIndex);
// Update commit index
updateCommitIndex(leaderCommit);
return AppendEntriesResult.success(currentTerm);
}
}
๐ค Decision Criteria & Evaluationโ
Consistency Model Comparison Matrixโ
Aspect | Strong Consistency | Eventual Consistency | Causal Consistency |
---|---|---|---|
Latency | Higher | Lower | Medium |
Availability | Lower | Higher | Medium |
Complexity | High | Low | Medium |
Use Cases | Financial, ACID | Social, Analytics | Collaborative |
Network Requirements | High | Low | Medium |
When to Use Strong Consistencyโ
-
Financial Systems
- Banking transactions
- Payment processing
- Account balances
-
Critical Systems
- Medical records
- Security systems
- Legal documents
๐ Performance Metrics & Optimizationโ
Key Performance Indicatorsโ
public class ConsistencyMetrics {
private final MetricRegistry metrics;
public void recordLatency(long startTime) {
long duration = System.currentTimeMillis() - startTime;
metrics.histogram("consistency.latency").update(duration);
}
public void recordConsensusRounds(int rounds) {
metrics.histogram("consensus.rounds").update(rounds);
}
public void recordQuorumSize(int size) {
metrics.gauge("quorum.size", () -> size);
}
}
โ ๏ธ Anti-Patternsโ
1. Incorrect Quorum Calculationโ
โ Wrong:
public class IncorrectQuorum {
// Always using simple majority
private int calculateQuorum(int nodeCount) {
return nodeCount / 2 + 1;
}
}
โ Correct:
public class CorrectQuorum {
private int calculateQuorum(int nodeCount, QuorumType type) {
switch (type) {
case WRITE:
return (nodeCount / 2) + 1;
case READ:
return nodeCount - (nodeCount / 2);
case FAST_PATH:
return (3 * nodeCount) / 4;
default:
throw new IllegalArgumentException();
}
}
}
2. Ignoring Network Partitionsโ
โ Wrong:
public class UnsafeConsistency {
public void write(Data data) {
// Assuming all nodes are always available
nodes.forEach(node -> node.write(data));
}
}
โ Correct:
public class SafeConsistency {
public WriteResult write(Data data) {
int successfulWrites = 0;
List<Exception> failures = new ArrayList<>();
for (Node node : nodes) {
try {
node.write(data);
successfulWrites++;
} catch (NetworkPartitionException e) {
failures.add(e);
}
}
if (successfulWrites < quorumSize) {
throw new QuorumNotReachedException(failures);
}
return new WriteResult(successfulWrites);
}
}
๐ก Best Practicesโ
1. Design Principlesโ
- Use appropriate consensus protocols
- Implement proper failure detection
- Handle network partitions
- Monitor system health
2. Implementation Guidelinesโ
public class ConsistencyManager {
private final ConsensusProtocol consensus;
private final FailureDetector failureDetector;
private final QuorumManager quorumManager;
public WriteResult write(Transaction tx) {
// Verify system health
if (!failureDetector.isSystemHealthy()) {
throw new SystemUnhealthyException();
}
// Get quorum
Set<Node> quorum = quorumManager.getQuorum();
// Execute consensus protocol
return consensus.execute(tx, quorum);
}
}
๐ Troubleshooting Guideโ
Common Issuesโ
- Split Brain
public class SplitBrainDetector {
public boolean detectSplitBrain() {
Set<Node> partition1 = getPartition1Nodes();
Set<Node> partition2 = getPartition2Nodes();
return partition1.size() >= quorumSize &&
partition2.size() >= quorumSize;
}
}
- Stale Reads
public class StaleReadDetector {
public boolean isStaleRead(ReadResult result) {
return result.getVersion() <
getLatestCommittedVersion();
}
}
๐งช Testingโ
Test Scenariosโ
@Test
public void testStrongConsistency() {
ConsistencyManager manager = new ConsistencyManager();
// Write data
WriteResult write = manager.write("key1", "value1");
// Immediate read should see the write
ReadResult read = manager.read("key1");
assertEquals("value1", read.getValue());
// All nodes should have the same value
for (Node node : manager.getNodes()) {
assertEquals("value1", node.read("key1").getValue());
}
}
@Test
public void testNetworkPartition() {
ConsistencyManager manager = new ConsistencyManager();
NetworkSimulator network = new NetworkSimulator();
// Create network partition
network.createPartition();
// Write should fail without quorum
assertThrows(QuorumNotReachedException.class,
() -> manager.write("key1", "value1"));
}
๐ Real-world Use Casesโ
1. Google Spannerโ
- External consistency
- TrueTime API
- Global distribution
2. Azure Cosmos DBโ
- Strong consistency option
- Global distribution
- Multi-region writes
3. ZooKeeperโ
- Atomic broadcasts
- Consensus protocol
- Configuration management
๐ Referencesโ
Booksโ
- "Designing Data-Intensive Applications" by Martin Kleppmann
- "Distributed Systems" by Maarten van Steen and Andrew S. Tanenbaum
Papersโ
- "Impossibility of Distributed Consensus with One Faulty Process" by Fischer, Lynch, and Paterson
- "In Search of an Understandable Consensus Algorithm" by Diego Ongaro and John Ousterhout